
Question 8:

Find the area under the curve $y = \sqrt{6x + 4}$ above x-axis from x = 0 to x = 2. Draw a sketch of the curve also.

Solution:

We have to find area enclosed by x-axis

Equation (1) represents y-axis and a line parallel to y-axis passing through (2,0) respectively. Equation (2) represents a parabola with vertex at $\left(-\frac{2}{3},0\right)$ and passes through the points (0,2),(0,-2), so rough sketch of the curves is as below:-

Shaded region represents the required area. It is sliced in approximation rectangle with its Width $= \Delta x$, and length = (y - 0) = y

Area of rectangle = $y \Delta x$.

This approximation rectangle slide from x = 0 to x = 2, so

Required area = Region OABCO
=
$$\int_0^2 \sqrt{6x + 4} dx$$

= $\left\{ \frac{2}{3} \frac{(6x+4)\sqrt{6x+4}}{6} \right\}_0^2$
= $\frac{1}{9} \left[\left((12+4)\sqrt{12+4} \right) - \left((0+4)\sqrt{0+4} \right) \right]$
= $\frac{1}{9} \left[16\sqrt{16} - 4\sqrt{4} \right]$
= $\frac{1}{9} \left(64 - 8 \right)$

Required area = $\frac{56}{9}$ square units